Factors Influencing Geographic and Seasonal Variations in Light Exposure of Coral Assemblages in the Florida Keys

Richard G. Zepp US EPA Athens, Georgia

Global Distribution of Surface UV

Corals are in tropics/subtropics where UV is highest and changes in UV-B due to ozone depletion are small:

But important changes in underwater UV may be associated with increased water clarity caused by climate change

Greenhouse Warming and Aquatic UV Exposure

Stratification effects - Stratification can result in increased UV penetration and exposure in the upper water column. Important during ENSO events when corals have extensively bleached?

Precipitation changes - Droughts increase aquatic UV exposure by reducing water depths and runoff of UV-absorbing substances from land.

Increased climatic variability – Increased fluctuations in precipitation frequency and amount can enhance the variability in aquatic UV exposure thus reducing ability of organisms to adapt

Biological changes - Biological sources of UV absorbing substances likely will change with greenhouse warming

Map Illustrating Sites Investigated in Florida Keys

Lower Keys Sites Included in Corals Research

Equation That Describes Penetration Of Solar UV Irradiance Into the Sea (Exponential decrease with depth)

$$E_d(z, \lambda) = E_d(0, \lambda) e^{-K_d(\lambda) * z}$$

Satlantic MicroPro Optical Profiler Used for Part of UV Depth Profiling

UV-B Irradiance Vs. Depth in the Florida Keys

Seasonal Variation in the Temperature and UV vs Depth Profiles at a Site Near Looe Key Coral Reef, Florida Keys

Solar Irradiance and Temperature vs. Depth in the Atlantic South of Maryland Shoals, Florida Keys (Shows stratification effect on UV penetration)

Observed 3-fold decrease in CDOM conc. above thermocline corresponds to 8-fold increase in UV-B exposure at depth of 4 m

Diffuse Attenuation Coefficients for Corals Sites in Dry Tortugas

Photobleaching of Water from Hawk Channel Exposed to Solar Radiation

UV-Induced Production of ROS From CDOM

ROS = reactive oxygen species

Definition of Absorption Coefficient

$$a_{?} = 2.303 A_{?} / l$$

where a_2 is the absorption coefficient at wavelength ?, A_2 is the absorbance of a filtered water sample (0.2 μ m) and l is the light pathlength in meters

Comparison of Diffuse Attenuation and CDOM Absorption Coefficients For Florida Keys Sites (shows that CDOM controls UV-B penetration)

CDOM is UV absorbing component of dissolved organic matter

Absorption Spectra of Water Obtained Along S – N Transect Near Looe Key, Florida Keys

Non-linear Exponential Equation That Describes Absorption Spectra of Florida Keys CDOM

$$a(\lambda) = b + a(\lambda o) \exp[-S(\lambda - \lambda o)]$$

For Florida Keys waters:
Over reefs, S is 0.021-0.036
Closer to land S is 0.016-0.019

Colored Dissolved Organic Matter (CDOM) Estimated from SeaWIFS Data and Directly Measured (June 2, 1998) (Carder et al., 1999)

Relationship Between Diffuse Attenuation Coefficient And Absorption and Scattering Coefficients

$$K_d = (a^2 + 0.256 \text{ ab})^{1/2}$$

Part affected by particle scattering

Kirk, 1983

Diffuse Attenuation Coefficient Spectra Compared To Absorption Spectra for Mid-Hawk Channel

Sombrero Tower Site, Florida Keys

Diurnal Variation in UV-B Diffuse Attenuation Coefficient (305 nm) During August at Sombrero Tower, Florida Keys

Diurnal Variation in UV-B Diffuse Attenuation Coefficient (305 nm) at Sombrero Reef

Midday UV-B (305 nm) Diffuse Attenuation Coefficients at Sombrero Tower

Relationship Between Drop-off in Irradiance With Depth and Diffuse Attenuation Coefficient

Comparison of Setlow Action Spectrum and Solar Spectral Irradiance at Eastern Sambo Reef, Florida Keys, July 1999

Estimated Exposure to DNA-Damaging Solar UV-B Irradiance Vs. Depth

Relationship Between UV Diffuse Attenuation Coefficients (340 nm) and Fluorescence Along Transect Across Hawk Channel, Florida Keys

Potential Sources of UV-Absorbing Substances in Water

- Local: Mangroves and underwater plants, e.g. sea grasses
- Transport of CDOM from Florida Bay and southwest Florida coast
- Detritus decay in bluewater outside reefs
- Particulates, e.g. detritus

Sampling Procedure For Grass Flux Studies Near Looe Key

Temperature Effects on the Production of CDOM from *Thalassia testudinum* Litter

Conclusions

- •CDOM transported over the coral reefs plays key role in controlling UV exposure
- •Calm, stratified conditions enhance UV penetration caused by CDOM photobleaching (seasonal, ENSO?)
- •Particles play important role in attenuating UV in coastal shelf region (Hawk Channel)
- Near shore mangroves and seagrasses are major CDOM sources in Florida Keys

ACKNOWLEDGMENTS

- -Susan Anderson et al
- -Emily White
- -Erik Stabenau
- -Erich Mueller, Erich Bartels
- -Bill Fisher
- -Debbie Santavy